Performance Evaluation for Mean Sea Level Prediction using Multivariate Adaptive Regression Spline and Artificial Neural Network
نویسندگان
چکیده
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt
In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...
متن کاملمدلسازی رویشگاه بالقوه گونه گیاهی boiss.)) ferula ovinaبا استفاده از روش های artificial neural network و multivariate adaptive regression splines در منطقه فریدونشهر استان اصفهان
نحوه پراکنش مکانی گونه ها متضمن درک عوامل بوم شناختی موثر برآنها می باشد که نقش برجسته ای در ارزیابی، حفاظت، توسعه و برنامه ریزی های منطقه ای دارد. بررسی پراکنش رویشگاه و تناسب آن برای گونه های گیاهی اغلب با محدودیت و کمبود اطلاعات روبرو است. یکی از ابزارهای بالقوه جهت کامل نمودن و رفع کمبود اطلاعات درباره علل پراکنش گونه ها و تناسب رویشگاهی، استفاده از مدلسازی پراکنش بالقوه گونه ها می باشد که ...
15 صفحه اولThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملComparison of artificial neural network and multivariate regression methods in prediction of soil cation exchange capacity (Case study: Ziaran region)
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ghana Mining Journal
سال: 2018
ISSN: 0855-210X
DOI: 10.4314/gm.v18i1.1